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In this talk, we prove local well-posedness of the stochastic complex Ginzburg-Landau equation

with a complex-valued space-time white noise ξ in the three-dimensional torus T3 = (R/Z)3

{

∂tu = (i+ µ)△u+ ν(1− |u|2)u+ ξ on (0,∞)×T
3,

u(0, ·) = u0(·).
(P)

Here, i =
√
−1, µ is a positive constant and ν is a complex constant.

Before starting our discussion, we introduce notation. We denote by D the space of all smooth

functions on T
3 and by D′ its dual. For every α ∈ R, 1 ≤ p, q ≤ ∞, we denote by Bα

p,q the Besov

space, which is defined by the completion of the space of smooth functions on T
3 under the Besov

norm ‖·‖Bα

p,q
. To define the Besov norm, we use the Littlewood-Paley block {△m = F−1ρmF}∞m=−1,

where F and F−1 are the Fourier transformation and its inverse, respectively, and {ρm}∞m=−1 is

the dyadic partition of unity. For notational simplicity, we set the Hölder-Besov space Cα = Bα
∞,∞

and denote by CTCα the space of all Cα-valued continuous functions on [0, T ] for every T > 0. Next

we introduce the notion of paradifferential calculus. For every f ∈ Cα and g ∈ Cβ , we define the

resonance f � g and the praproduct f 4 g. They give the decomposition fg = f 4 g+ f � g+ f 5 g.

The paraproduct f 4 g can be defined for any α, β ∈ R, but the resonance f � g can be defined for

α+ β > 0. Hence, in order define products fg, it is necessary that α+ β > 0 holds. Finally, we set

L1 = ∂t − {(i+ µ)△− 1}, P 1
t = et{(i+µ)△−1} and I(u)t =

∫ t

−∞
P 1
t−sus ds for u : [0,∞)→ D′.

Now we return to well-posedness of the equation (P). For some reason, we write (P) as L1u =

ν(1 − |u|2)u + u + ξ and discuss the problem. To illustrate difficulty of this problem, we consider

a stationary solution to the linear equation L1Z = ξ on (0,∞) × T
3. The solution is given by

Zt = I(ξ)t formally and it is not a function but a distribution with respect to the space variable

in the dimension three. More precisely, Zt belongs C−
1
2
−κ for any κ > 0. Hence the products Z2

t ,

ZtZt, Z
2
t Zt and so on are not defined a priori. Since the irregularity of the solution to (P) comes

from the white noise, it is natural to guess that the space regularity of ut is not better than that of

Zt and that the product |ut|2ut = u2
tut is not defined a priori.

To overcome this difficulty, we use the theory of paracontrolled distributions developed in

[GIP15]. The method consists a deterministic part and a probabilistic part.
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In the deterministic part, we construct the solution map of (P) from the space X κ
T∗

of driving

vectors to the space Dκ,κ′

T∗
of solutions, where T∗ is a life time of a solution and κ, κ′ are positive

small parameters, and show that the solution map is continuous. To be precise, for every 0 < κ <

κ′ < 1/18 and T > 0, we call a vector of space-time distributions

X = (X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X )

∈ CT C−
1
2
−κ × (CTC−1−κ)2 × (CT C1−κ)2 × L

1
2
−κ, 1

4
− 1

2
κ

T × (CTC−κ)6 × (CT C−
1
2
−κ)2

which satisfies L1X = X and L1X = X a driving vector of (P). We denote by X κ
T the set

of all driving vector. The definition of Dκ,κ′

T is a little complicated. Because we transform (P) to

a system of two equations with respect to (v, w) so that u = X − νX + v + w solves (P). The

space Dκ,κ′

T is where (v, w) lives.

We explain the meanings of the graphical symbols , , , ,. . . . They are just coordinates

mathematically; however, the dot and the line are icons for the white noise and the operation I,

respectively. Hence, represents I(ξ) = Z. Moreover, and are icons for the complex conjugate

of Z and the product ZZ, respectively. So means I(Z2Z). Finally, denotes the resonance term;

represents I(Z2Z) � Z.

In the probabilistic part, we construct a driving vector Xǫ from a smeared noise ξǫ with a

parameter 0 < ǫ < 1 and show convergence of Xǫ as ǫ ↓ 0. Of course, we assume that ξǫ → ξ

as ǫ ↓ 0. More precisely, we set Xǫ, = Zǫ = I(ξǫ)t, X
ǫ, = Zǫ and Xǫ, = (Zǫ)2; however, since

c
ǫ
1 = E[Zǫ

tZ
ǫ
t ] diverges as ǫ ↓ 0, we need to consider renormalization and set Xǫ, = ZǫZǫ − c

ǫ
1. In

order to define Xǫ,τ for , , , and , it is necessary to consider renormalization. The other

renormalization constants are c
ǫ
2,1 = 1

2E[Xǫ,
(t,x) � Xǫ,

(t,x)] and c
ǫ
2,2 = E[Xǫ,

(t,x) � Xǫ,
(t,x)]. To show

convergence of Xǫ, we express △mXτ by the Itô-Wiener integrals and estimate their kernels.

From the discussion above, we obtain our main result:

Theorem 1. Set cǫ = 2(cǫ1− νcǫ2,1− 2νcǫ2,2). Let u0 ∈ C−
2
3
+κ′ . Consider the renormalized equation

{

∂tu
ǫ = (i+ µ)△uǫ + ν(1− |uǫ|2)uǫ + νcǫuǫ + ξǫ, on (0,∞)×T

3,

u(0, ·) = u0(·).
(P’)

Then c
ǫ →∞ as ǫ ↓ 0 and there exist a unique process uǫ and a random time T ǫ

∗ such that

• uǫ solves (P’) on [0, T ǫ
∗)×T

3,

• T ǫ
∗ converges to some a.s. positive random time T∗ in probability,

• uǫ converges to some process u defined on [0, T∗) × T
3 in the sense that sup0≤s≤T∗/2 ‖uǫ

s −
us‖

C−
2
3
+κ′

→ 0 as ǫ→ 0 in probability. Furthermore, u is independent of the choice of ξǫ.
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