Stochastic complex Ginzburg-Landau equation with space-time white noise *

Nobuaki Naganuma (Osaka University)

In this talk, we prove local well-posedness of the stochastic complex Ginzburg-Landau equation with a complex-valued space-time white noise ξ in the three-dimensional torus $\mathbf{T}^3 = (\mathbf{R}/\mathbf{Z})^3$

(P)
$$\begin{cases} \partial_t u = (\mathbf{i} + \mu) \Delta u + \nu (1 - |u|^2) u + \xi & \text{on } (0, \infty) \times \mathbf{T}^3, \\ u(0, \cdot) = u_0(\cdot). \end{cases}$$

Here, $i = \sqrt{-1}$, μ is a positive constant and ν is a complex constant.

Before starting our discussion, we introduce notation. We denote by \mathcal{D} the space of all smooth functions on \mathbf{T}^3 and by \mathcal{D}' its dual. For every $\alpha \in \mathbf{R}$, $1 \leq p, q \leq \infty$, we denote by $\mathcal{B}_{p,q}^{\alpha}$ the Besov space, which is defined by the completion of the space of smooth functions on \mathbf{T}^3 under the Besov norm $\|\cdot\|_{\mathcal{B}_{p,q}^{\alpha}}$. To define the Besov norm, we use the Littlewood-Paley block $\{\Delta_m = \mathcal{F}^{-1}\rho_m \mathcal{F}\}_{m=-1}^{\infty}$, where \mathcal{F} and \mathcal{F}^{-1} are the Fourier transformation and its inverse, respectively, and $\{\rho_m\}_{m=-1}^{\infty}$ is the dyadic partition of unity. For notational simplicity, we set the Hölder-Besov space $\mathcal{C}^{\alpha} = \mathcal{B}_{\infty,\infty}^{\alpha}$ and denote by $C_T \mathcal{C}^{\alpha}$ the space of all \mathcal{C}^{α} -valued continuous functions on [0, T] for every T > 0. Next we introduce the notion of paradifferential calculus. For every $f \in \mathcal{C}^{\alpha}$ and $g \in \mathcal{C}^{\beta}$, we define the resonance $f \odot g$ and the praproduct $f \otimes g$. They give the decomposition $fg = f \otimes g + f \odot g + f \otimes g + f \otimes g$. The paraproduct $f \otimes g$ can be defined for any $\alpha, \beta \in \mathbf{R}$, but the resonance $f \odot g$ can be defined for $\alpha + \beta > 0$. Hence, in order define products fg, it is necessary that $\alpha + \beta > 0$ holds. Finally, we set $\mathcal{L}^1 = \partial_t - \{(\mathbf{i} + \mu)\Delta - 1\}, P_t^1 = e^{t\{(\mathbf{i} + \mu)\Delta - 1\}}$ and $I(u)_t = \int_{-\infty}^t P_{t-s}^1 u_s \, ds$ for $u : [0, \infty) \to \mathcal{D}'$.

Now we return to well-posedness of the equation (P). For some reason, we write (P) as $\mathcal{L}^1 u = \nu(1 - |u|^2)u + u + \xi$ and discuss the problem. To illustrate difficulty of this problem, we consider a stationary solution to the linear equation $\mathcal{L}^1 Z = \xi$ on $(0, \infty) \times \mathbf{T}^3$. The solution is given by $Z_t = I(\xi)_t$ formally and it is not a function but a distribution with respect to the space variable in the dimension three. More precisely, Z_t belongs $\mathcal{C}^{-\frac{1}{2}-\kappa}$ for any $\kappa > 0$. Hence the products Z_t^2 , $Z_t \overline{Z_t}, Z_t^2 \overline{Z_t}$ and so on are not defined a priori. Since the irregularity of the solution to (P) comes from the white noise, it is natural to guess that the space regularity of u_t is not better than that of Z_t and that the product $|u_t|^2 u_t = u_t^2 \overline{u_t}$ is not defined a priori.

To overcome this difficulty, we use the theory of paracontrolled distributions developed in [GIP15]. The method consists a deterministic part and a probabilistic part.

^{*}This talk is based on a joint work with Masato Hoshino (The University of Tokyo) and Yuzuru Inahama (Kyushu University)

In the deterministic part, we construct the solution map of (P) from the space $\mathcal{X}_{T_*}^{\kappa}$ of driving vectors to the space $\mathcal{D}_{T_*}^{\kappa,\kappa'}$ of solutions, where T_* is a life time of a solution and κ,κ' are positive small parameters, and show that the solution map is continuous. To be precise, for every $0 < \kappa < \kappa' < 1/18$ and T > 0, we call a vector of space-time distributions

$$X = (X^{\dagger}, X^{\flat}, X^{\flat})$$

$$\in C_T \mathcal{C}^{-\frac{1}{2}-\kappa} \times (C_T \mathcal{C}^{-1-\kappa})^2 \times (C_T \mathcal{C}^{1-\kappa})^2 \times \mathcal{L}_T^{\frac{1}{2}-\kappa, \frac{1}{4}-\frac{1}{2}\kappa} \times (C_T \mathcal{C}^{-\kappa})^6 \times (C_T \mathcal{C}^{-\frac{1}{2}-\kappa})^2$$

which satisfies $\mathcal{L}^1 X^{\bigvee} = X^{\bigvee}$ and $\mathcal{L}^1 X^{\bigvee} = X^{\bigvee}$ a *driving vector* of (P). We denote by \mathcal{X}_T^{κ} the set of all driving vector. The definition of $\mathcal{D}_T^{\kappa,\kappa'}$ is a little complicated. Because we transform (P) to a system of two equations with respect to (v, w) so that $u = X^{\downarrow} - \nu X^{\bigvee} + v + w$ solves (P). The space $\mathcal{D}_T^{\kappa,\kappa'}$ is where (v, w) lives.

We explain the meanings of the graphical symbols $i, \forall, \forall, \dot{Y}, \dots$ They are just coordinates mathematically; however, the dot and the line are icons for the white noise and the operation I, respectively. Hence, i represents $I(\xi) = Z$. Moreover, i and \forall are icons for the complex conjugate of Z and the product $Z\overline{Z}$, respectively. So \forall means $I(Z^2\overline{Z})$. Finally, \circ denotes the resonance term; \forall represents $I(Z^2\overline{Z}) \odot Z$.

In the probabilistic part, we construct a driving vector X^{ϵ} from a smeared noise ξ^{ϵ} with a parameter $0 < \epsilon < 1$ and show convergence of X^{ϵ} as $\epsilon \downarrow 0$. Of course, we assume that $\xi^{\epsilon} \to \xi$ as $\epsilon \downarrow 0$. More precisely, we set $X^{\epsilon, \dagger} = Z^{\epsilon} = I(\xi^{\epsilon})_t$, $X^{\epsilon, \ddagger} = \overline{Z^{\epsilon}}$ and $X^{\epsilon, \bigvee} = (Z^{\epsilon})^2$; however, since $\mathfrak{c}_1^{\epsilon} = \mathbf{E}[Z_t^{\epsilon}\overline{Z_t^{\epsilon}}]$ diverges as $\epsilon \downarrow 0$, we need to consider renormalization and set $X^{\epsilon, \bigvee} = Z^{\epsilon}\overline{Z^{\epsilon}} - \mathfrak{c}_1^{\epsilon}$. In order to define $X^{\epsilon, \tau}$ for $\bigvee, \bigvee, \bigvee$ and \bigvee , it is necessary to consider renormalization. The other renormalization constants are $\mathfrak{c}_{2,1}^{\epsilon} = \frac{1}{2} \mathbf{E}[X_{(t,x)}^{\epsilon, \bigvee} \odot X_{(t,x)}^{\epsilon, \because}]$ and $\mathfrak{c}_{2,2}^{\epsilon} = \mathbf{E}[X_{(t,x)}^{\epsilon, \bigvee} \odot X_{(t,x)}^{\epsilon, \bigvee}]$. To show convergence of X^{ϵ} , we express $\Delta_m X^{\tau}$ by the Itô-Wiener integrals and estimate their kernels.

From the discussion above, we obtain our main result:

Theorem 1. Set $\mathfrak{c}^{\epsilon} = 2(\mathfrak{c}_{1}^{\epsilon} - \overline{\nu}\overline{\mathfrak{c}_{2,1}^{\epsilon}} - 2\nu\mathfrak{c}_{2,2}^{\epsilon})$. Let $u_{0} \in \mathcal{C}^{-\frac{2}{3}+\kappa'}$. Consider the renormalized equation

(P')
$$\begin{cases} \partial_t u^{\epsilon} = (\mathbf{i} + \mu) \Delta u^{\epsilon} + \nu (1 - |u^{\epsilon}|^2) u^{\epsilon} + \nu \mathfrak{c}^{\epsilon} u^{\epsilon} + \xi^{\epsilon}, \quad on \ (0, \infty) \times \mathbf{T}^3, \\ u(0, \cdot) = u_0(\cdot). \end{cases}$$

Then $\mathfrak{c}^{\epsilon} \to \infty$ as $\epsilon \downarrow 0$ and there exist a unique process u^{ϵ} and a random time T^{ϵ}_* such that

- u^{ϵ} solves (P') on $[0, T^{\epsilon}_*) \times \mathbf{T}^3$,
- T^{ϵ}_{*} converges to some a.s. positive random time T_{*} in probability,
- u^{ϵ} converges to some process u defined on $[0, T_*) \times \mathbf{T}^3$ in the sense that $\sup_{0 \le s \le T_*/2} \|u_s^{\epsilon} u_s\|_{\mathcal{C}^{-\frac{2}{3}+\kappa'}} \to 0$ as $\epsilon \to 0$ in probability. Furthermore, u is independent of the choice of ξ^{ϵ} .

References

[GIP15] Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski. Paracontrolled distributions and singular PDEs. Forum Math. Pi, 3:e6, 75, 2015.